Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Şamil Isısı, ${ }^{a}$ Yavuz Köysal, ${ }^{\text {a, }}$ Metin Yavuz, ${ }^{\text {a }}$ Meric Köksal ${ }^{\text {b }}$ and Hakkı Erdoğan ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, ${ }^{\text {b }}$ Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey, and ${ }^{\text {c }}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey

Correspondence e-mail: yavuzk@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.125$
Data-to-parameter ratio $=19.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

5-(2-Chlorobenzoyl)-1,3-benzoxazol-2(3H)-one

The title compound, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}_{3}$, contains a planar dihydrobenzoxazolone ring system and a planar chlorobenzoyl group; the dihedral angle between the two planes is $86.84(4)^{\circ}$. In the crystal structure, there are intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, together with $\pi-\pi$ stacking interactions.

Comment

Acylated benzoxazolone derivatives have been extensively synthesized and evaluated for their potential medical use, in view of their analgesic, antipyretic, anticonvulsant, hypnotic and antimicrobial activities (Sam \& Valentine, 1969; Aichaoui, Lesieur \& Henichart, 1992; Aichaoui, Lesieur, Lespagnol et al., 1992; Liacha et al., 1999; Uçar et al., 1998). Although both the ring N and O atoms in benzoxazolone are electrondonating, it has been claimed that the acylation product cannot be easily predicted (Aichaoui et al., 1991). Many investigations on benzoxazolin-2-one have shown that direct acylation always gives only one product, viz. that with the acyl group at the 6-position (Aichaoui et al., 1992; Yous et al., 1994).

The site of acylation in 6-acylbenzoxazolin-2(3H)-ones has been confirmed by X-ray single-crystal diffraction (Mairesse et al., 1984) and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Aichaoui et al., 1991; Yous et al., 1994). However, there are few examples of alternative synthetic routes to 5-acylbenzoxazol-2(3H)-ones; only a few sets of ${ }^{1} \mathrm{H}$ NMR data are available for these compounds

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Received 26 October 2004 Accepted 10 November 2004 Online 20 November 2004
(Aichaoui et al., 1991; Lesieur et al., 1990). It was our aim to synthesize 5-(2-chlorobenzoyl)-1,3-benzoxazol-2(3H)-one, (I), by an alternative route and the results are presented here.

The 1,3-benzoxazol-2(3H)-one ring system is essentially planar, as was found in a related structure (Köysal et al., 2004). The maximum deviation from the plane of the nine-membered ring system is 0.014 (3) \AA for atom C13. The 1,3-benzoxazol$2(3 \mathrm{H})$-one and substituent benzene groups are almost perpendicular to each other, with a dihedral angle of 86.84 (4) ${ }^{\circ}$.

In the crystal structure, there are intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), which link the molecules into discrete pairs parallel to the ac plane. There are also $\pi-\pi$ stacking interactions between parallel 1,3-benzox-azol- $2(3 H)$-one ring systems. The closest perpendicular separation is $3.412 \AA$ between the ring system at (x, y, z) and that at $(-x, 2-y,-z)$. A short $\mathrm{Cl} \cdots \mathrm{Cl}$ contact of 3.41 (1) \AA exists between the Cl atom at (x, y, z) and that at $(1-x, 1-y$, $1-z$).

Experimental

As direct acylation of 1,3-benzoxazol-2(3H)-one gives the 6 -acyl derivative, the synthetic procedure for 5 -acyl derivatives was started from 2-aminophenol, followed by acylation and then cyclization of the acylated aminophenol (Aichaoui et al., 1991). To protect the amino group of the starting material, 2 -aminophenol, acetic anhydride (0.14 mol) was added dropwise to a 60 ml suspension of 2aminophenol (0.09 mol) in distilled water, with stirring. FriedelCrafts acylation of 2-acetylaminophenol (0.05 mol) with 2 -chlorobenzoyl chloride (0.07 mol) yielded 2-(acetylamino)-4-(2-chlorobenzoyl)phenol (Lesieur et al., 1990). After deprotection of the acetyl group in an alkaline medium by heating in concentrated NaOH , the resulting 2 -amino-4-(2-chlorobenzoyl)phenol (0.1 mol) and urea $(0.12 \mathrm{~mol})$ were mixed and heated at 413 K for 1.5 h , and at 443 K for a further 2.5 h . The final product was then cooled, water $(30 \mathrm{ml})$ was added and the mixture stirred for 1 h . The resulting precipitate was filtered, washed with water and crystallized from ethanol. Analysis calculated: C 61.44, H $2.95, \mathrm{~N} 5.12 \%$; found: C 62.03, H 2.42 , N 5.27%. The title compound was obtained as white prisms (yield 28%; m.p: $482-483 \mathrm{~K})$. IR data ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3200(\mathrm{~N}-\mathrm{H}), 3123,3003(\mathrm{C}-\mathrm{H})$, 1787 ($\mathrm{C}=\mathrm{O}$, lactam), $1668(\mathrm{C}=\mathrm{O}$, ketone $), 1628,1621,1592(\mathrm{C}=\mathrm{C})$, 1274 ($\mathrm{C}-\mathrm{O}-\mathrm{C}$).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClNO}_{3}$
$M_{r}=273.66$
Monoclinic, $P 2_{1} / c$
$a=10.4550$ (9) \AA
$b=7.8954(4) \AA$
$c=14.7960(12) \AA$
$\beta=93.724(7)^{\circ}$
$V=1218.78(16) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-2 diffractometer

ω scans
Absorption correction: by integration (X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.846, T_{\text {max }}=0.953$
21273 measured reflections

$D_{x}=1.491 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 16248 reflections
$\theta=2.0-29.5^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, white
$0.80 \times 0.54 \times 0.23 \mathrm{~mm}$

3386 independent reflections
2456 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=29.6^{\circ}$
$h=-14 \rightarrow 14$
$k=-10 \rightarrow 10$
$l=-20 \rightarrow 19$

Figure 2
The crystal structure of (I), projected along the b axis. Dashed lines indicate hydrogen bonds.

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042
$$

$$
w R\left(F^{2}\right)=0.125
$$

$$
S=1.06
$$

3386 reflections
173 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.065 P)^{2}\right. \\
& +0.0757 \mathrm{P} \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.016 \text { (3) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cl} 1-\mathrm{C} 2$	$1.7290(16)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.2119(16)$
$\mathrm{N} 2-\mathrm{C} 14$	$1.3420(19)$	$\mathrm{C} 11-\mathrm{O} 2$	$1.3797(15)$
N2-C12	$1.3859(16)$	O3-C14	$1.2061(17)$
$\mathrm{C} 12-\mathrm{C} 11$	$1.3826(17)$	$\mathrm{C} 14-\mathrm{O} 2$	$1.3699(18)$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.90	$2.7498(16)$	170
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.93	2.44	$3.2948(17)$	153
Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x, 1+y, z$				

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Aichaoui, H., Lesieur, D. \& Henichart, J. P. (1992). J. Heterocycl. Chem. 29, 171-175.

Aichaoui, H., Lesieur, D., Lespagnol, C., Devissaguet, M. \& Guardiola, B. (1992). US Patent No. 5147883.

Aichaoui, H., Poupaert, J. H., Lesieur, D. \& Henichart, J. P. (1991). Tetrahedron, 47, 6649-6654.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Köysal, Y., Işık, Ş., Köksal, M., Erdoğan, H., \& Gökhan, N. (2004). Acta Cryst. C60, o232-o234.
Lesieur, D., Aichaoui, H., Lespagnol, C. \& Bonnet, J. (1990). Leurs Procedes De Preparation et Les Compositions Pharmaceutiques Qui Les Contiennent. European Patent No. EP 0390673 Al.
Liacha, M., Yous, S., Depreux, P., Poupaert, J. H. \& Lesieur, D. (1999). Heterocycles, 51, 1929-1943.

Mairesse, P. G., Boivin, J. C. \& Thomas, D. T. (1984). Acta Cryst. C40, 10191020.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sam, J. \& Valentine, J. L. (1969). J. Pharm. Sci. 58, 1043-1054.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Uçar, H., Derpoorten, K. V., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. \& Poupaert, J. H. (1998). J. Med. Chem. 41, 1138-1145.

Yous, S., Poupaert, J. H., Lesieur, I., Depreux, P. \& Lesieur, D. (1994). J. Org. Chem. 59, 1574-1576.

