Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Şamil Işık,^a Yavuz Köysal,^a* Metin Yavuz,^a Meriç Köksal^b and Hakkı Erdoğan^c

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, ^bFaculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey, and ^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey

Correspondence e-mail: yavuzk@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.042 wR factor = 0.125 Data-to-parameter ratio = 19.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-(2-Chlorobenzoyl)-1,3-benzoxazol-2(3H)-one

The title compound, $C_{14}H_{18}CINO_3$, contains a planar dihydrobenzoxazolone ring system and a planar chlorobenzoyl group; the dihedral angle between the two planes is 86.84 (4)°. In the crystal structure, there are intermolecular $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, together with $\pi-\pi$ stacking interactions.

Received 26 October 2004 Accepted 10 November 2004 Online 20 November 2004

Comment

Acylated benzoxazolone derivatives have been extensively synthesized and evaluated for their potential medical use, in view of their analgesic, antipyretic, anticonvulsant, hypnotic and antimicrobial activities (Sam & Valentine, 1969; Aichaoui, Lesieur & Henichart, 1992; Aichaoui, Lesieur, Lespagnol *et al.*, 1992; Liacha *et al.*, 1999; Uçar *et al.*, 1998). Although both the ring N and O atoms in benzoxazolone are electron-donating, it has been claimed that the acylation product cannot be easily predicted (Aichaoui *et al.*, 1991). Many investigations on benzoxazolin-2-one have shown that direct acylation always gives only one product, *viz.* that with the acyl group at the 6-position (Aichaoui *et al.*, 1992; Yous *et al.*, 1994).

The site of acylation in 6-acylbenzoxazolin-2(3H)-ones has been confirmed by X-ray single-crystal diffraction (Mairesse *et al.*, 1984) and ¹H NMR spectroscopy (Aichaoui *et al.*, 1991; Yous *et al.*, 1994). However, there are few examples of alternative synthetic routes to 5-acylbenzoxazol-2(3H)-ones; only a few sets of ¹H NMR data are available for these compounds

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

(Aichaoui et al., 1991; Lesieur et al., 1990). It was our aim to synthesize 5-(2-chlorobenzoyl)-1,3-benzoxazol-2(3H)-one, (I), by an alternative route and the results are presented here.

The 1,3-benzoxazol-2(3H)-one ring system is essentially planar, as was found in a related structure (Köysal et al., 2004). The maximum deviation from the plane of the nine-membered ring system is 0.014 (3) Å for atom C13. The 1,3-benzoxazol-2(3H)-one and substituent benzene groups are almost perpendicular to each other, with a dihedral angle of 86.84 (4)°.

In the crystal structure, there are intermolecular $C-H \cdots O$ and N-H···O hydrogen bonds (Table 2), which link the molecules into discrete pairs parallel to the ac plane. There are also $\pi - \pi$ stacking interactions between parallel 1,3-benzoxazol-2(3H)-one ring systems. The closest perpendicular separation is 3.412 Å between the ring system at (x, y, z) and that at (-x, 2 - y, -z). A short Cl···Cl contact of 3.41 (1) A exists between the Cl atom at (x,y,z) and that at (1 - x, 1 - y, z)1 - z).

Experimental

As direct acylation of 1,3-benzoxazol-2(3H)-one gives the 6-acyl derivative, the synthetic procedure for 5-acyl derivatives was started from 2-aminophenol, followed by acylation and then cyclization of the acylated aminophenol (Aichaoui et al., 1991). To protect the amino group of the starting material, 2-aminophenol, acetic anhydride (0.14 mol) was added dropwise to a 60 ml suspension of 2aminophenol (0.09 mol) in distilled water, with stirring. Friedel-Crafts acylation of 2-acetylaminophenol (0.05 mol) with 2-chlorobenzoyl chloride (0.07 mol) yielded 2-(acetylamino)-4-(2-chlorobenzoyl)phenol (Lesieur et al., 1990). After deprotection of the acetyl group in an alkaline medium by heating in concentrated NaOH, the resulting 2-amino-4-(2-chlorobenzoyl)phenol (0.1 mol) and urea (0.12 mol) were mixed and heated at 413 K for 1.5 h, and at 443 K for a further 2.5 h. The final product was then cooled, water (30 ml) was added and the mixture stirred for 1 h. The resulting precipitate was filtered, washed with water and crystallized from ethanol. Analysis calculated: C 61.44, H 2.95, N 5.12%; found: C 62.03, H 2.42, N 5.27%. The title compound was obtained as white prisms (yield 28%; m.p: 482–483 K). IR data (KBr, cm⁻¹): 3200 (N–H), 3123, 3003 (C–H), 1787 (C=O, lactam), 1668 (C=O, ketone), 1628, 1621, 1592 (C=C), 1274 (C-O-C).

Crystal data

C H CINO	$D_{-1} = 1.401 \text{ Mg m}^{-3}$
M = 273.66	$D_x = 1.471$ Mg m Mo Ka radiation
$M_r = 275.00$	
Monoclinic, $P2_1/c$	Cell parameters from 16 248
a = 10.4550(9) A	reflections
b = 7.8954 (4) Å	$\theta = 2.0-29.5^{\circ}$
c = 14.7960 (12) Å	$\mu = 0.32 \text{ mm}^{-1}$
$\beta = 93.724 \ (7)^{\circ}$	T = 293 (2) K
$V = 1218.78 (16) \text{ Å}^3$	Prism, white
Z = 4	0.80 \times 0.54 \times 0.23 mm
Data collection	
Stoe IPDS-2 diffractometer	3386 independent reflections
ω scans	2456 reflections with $I > 2\sigma(I)$
Absorption correction: by	$R_{\rm int} = 0.072$
integration (X-RED32;	$\theta_{\rm max} = 29.6^{\circ}$
Stoe & Cie, 2002)	$h = -14 \rightarrow 14$
$T_{\min} = 0.846, \ T_{\max} = 0.953$	$k = -10 \rightarrow 10$

 $l = -20 \rightarrow 19$

Figure 2

The crystal structure of (I), projected along the b axis. Dashed lines indicate hydrogen bonds.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.065P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.0757P]
$wR(F^2) = 0.125$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3386 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
173 parameters	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
-	Extinction coefficient: 0.016 (3)

Table 1 Selected bond lengths (Å).

Cl1-C2	1.7290 (16)	C7-O1	1.2119 (16)
N2-C14	1.3420 (19)	C11-O2	1.3797 (15)
N2-C12	1.3859 (16)	O3-C14	1.2061 (17)
C12-C11	1.3826 (17)	C14-O2	1.3699 (18)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} N2 - H2 \cdots O3^{i} \\ C10 - H10 \cdots O1^{ii} \end{array}$	0.86 0.93	1.90 2.44	2.7498 (16) 3.2948 (17)	170 153
2	1.1	(**) 1		

Symmetry codes: (i) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (ii) x, 1 + y, z.

All H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å, N-H = 0.86 Å and $U_{iso}(H)$ = $1.2U_{eq}$ (parent atom).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Aichaoui, H., Lesieur, D. & Henichart, J. P. (1992). J. Heterocycl. Chem. 29, 171-175.

21273 measured reflections

- Aichaoui, H., Lesieur, D., Lespagnol, C., Devissaguet, M. & Guardiola, B. (1992). US Patent No. 5 147 883.
- Aichaoui, H., Poupaert, J. H., Lesieur, D. & Henichart, J. P. (1991). *Tetrahedron*, **47**, 6649–6654.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEP*III. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Köysal, Y., Işık, Ş., Köksal, M., Erdoğan, H., & Gökhan, N. (2004). Acta Cryst.
- C60, 0232-0234. Lesieur, D., Aichaoui, H., Lespagnol, C. & Bonnet, J. (1990). Leurs Procedes De Preparation et Les Compositions Pharmaceutiques Qui Les Contiennent.
- European Patent No. EP 0 390 673 Al.
 Liacha, M., Yous, S., Depreux, P., Poupaert, J. H. & Lesieur, D. (1999).
 Heterocycles, 51, 1929–1943.

- Mairesse, P. G., Boivin, J. C. & Thomas, D. T. (1984). Acta Cryst. C40, 1019– 1020.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sam, J. & Valentine, J. L. (1969). J. Pharm. Sci. 58, 1043-1054.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Uçar, H., Derpoorten, K. V., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem. 41, 1138–1145.
- Yous, S., Poupaert, J. H., Lesieur, I., Depreux, P. & Lesieur, D. (1994). J. Org. Chem. 59, 1574–1576.